Что представляет собой современная энергетика. Перспективы современной энергетики. Зачем беречь энергетические запасы


Современная электроэнергетика
имеет немало проблем, они обусловлены высокой стоимостью топлива, негативным влиянием на экологию и т.д..

Так, например, гидроэнергетические технологии имеют много преимуществ, но есть и существенные недостатки. Наклад, дождливые сезоны, низкие водные ресурсы во засухи могут серьезно влиять на количество произведенной энергии. Это может стать серьезной проблемой там, где гидроэнергия составляет значительную часть в энергетическом комплексе страны, плотин является причиной многих проблем: переселение жителей, пересыхание природных русел рек, заиление водохранилищ, водных споров между соседними странами, значительной стоимости этих проектов. ГЭС на равнинных реках приводит к затоплению больших территорий. Значительная часть площади водоемов, образующихся — мелководье. В летнее время за счет солнечной радиации в них активно развивается водная растительность, происходит так называемое «цветение» воды.

Изменение уровня воды, местами доходит до полного высушивания, приводит к гибели растительности. Плотины препятствуют миграции рыб. Многокаскадные ГЭС уже сейчас превратили реки в ряд озер, где возникают болота. В этих реках погибает рыба, а вокруг них меняется микроклимат, еще больше разрушая природные экосистемы.

О вредности ТЭС, то при сгорании топлива в тепловых двигателях выделяются вредные вещества: закись углерода, соединения азота, соединения свинца, а также выделяется в атмосферу значительное количество теплоты.

Кроме того, применение паровых турбин на ТЭС требует отвода больших площадей под пруды, в которых охлаждается отработанный пар. Ежегодно в мире сжигается 5 млрд. тонн угля и 3,2 млрд. тонн нефти, это сопровождается выбросом в атмосфере 2 10 Дж теплоты. Запасы органического топлива на Земле распределены крайне неравномерно, и при нынешних темпах потребления угля хватит на 150-200 лет, нефти — на 40-50 лет, а газа примерно на 60 лет. Весь цикл работ, связанных с добычей, транспортировкой и сжиганием органического топлива (главным образом угля), а также с образованием отходов, сопровождается выделением большого количества химических загрязнителей. Добыча угля связан с немалым засолением водных резервуаров куда сбрасываются воды из шахт. Кроме этого, в воде, откачиваемой, содержатся изотопы радия и радон. ТЭС, хотя и имеет современные системы очистки продуктов сжигания угля, выбрасывает за год в атмосферу по разным оценкам от 10 до 120 тыс. тонн оксидов серы, 2-20 тыс. тонн оксидов азота, 700-1500 тонн пепла (без очистки — в 2-3 раза больше) и выделяет 3-7 млн. тонн оксида углерода. Кроме того, образуется более 300 тыс. тонн золы, содержащей около 400 тонн токсичных металлов (мышьяка, кадмия, свинца, ртути). Можно отметить, что ТЭС, работающей на угле, выбрасывает в атмосферу больше радиоактивных веществ, чем АЭС той же мощности. Это связано с выбросом различных радиоактивных элементов, содержащихся в угле в виде вкраплений (радий, торий, полоний и др.).. Для количественной оценки воздействия радиации вводится понятие «коллективная доза», т.е. произведение значения дозы на количество населения, подвергшихся воздействию радиации (он выражается в человеко-зиверт). Оказалось, что в начале 90-х годов прошлого века ежегодный коллективная доза облучения населения Украины за счет тепловой энергетики составляла 767 чел / н и за счет атомной — 188 чел / н.

В настоящее время в атмосферу ежегодно выбрасывается 20-30 млрд. тонн оксида углерода. Прогнозы свидетельствуют, что при сохранении таких темпов в будущем к середине века средняя температура на Земле может повыситься на несколько градусов, что приведет к непредсказуемым глобальных климатических изменений. Сравнивая экологической действие различных энергоисточников, необходимо учесть их влияние на здоровье человека. Высокий риск для работников в случае использования угля связан с его добычей в шахтах и транспортировкой и с экологическим воздействием продуктов его сжигания. Последние две причины касаются нефти и газа и влияют на все население. Установлено, что глобальное влияние выбросов от сжигания угля и нефти на здоровье людей действует примерно так же, как авария типа Чернобыльской, повторяющегося раз в год. Это — «тихий Чернобыль», последствия которого непосредственно невидимые, но постоянно влияют на экологию. Концентрация токсичных примесей в химических отходах стабильная, и в конце концов все они перейдут в экосферу, в отличие от радиоактивных отходов АЭС распадаются.

В целом реальный радиационное воздействие АЭС на окружающую среду намного (в 10 и более раз) меньше допустимого. Если учесть экологическую действие различных энергоисточников на здоровье людей, то среди возобновляемых источников энергии риск от нормально работающих АЭС минимальный как для работников, деятельность которых связана с различными этапами ядерного топливного цикла, так и для населения. Глобальный радиационный взнос атомной энергетики на всех этапах ядерного топливного цикла сейчас составляет около 0,1% естественного фона и не превысит 1% даже при интенсивном ее развития в будущем.

Добыча и переработка урановых руд также связаны с неблагоприятной экологической действием.

Коллективная доза, полученная персоналом установки и населением на всех этапах добычи урана и изготовления топлива для реакторов, составляет 14% полной дозы ядерного топливного цикла. Но главной проблемой остается захоронения высокоактивных отходов. Объем особо опасных радиоактивных отходов составляет примерно одну стотысячную часть общего количества отходов, среди которых высокотоксичные химические элементы и их устойчивые соединения. Разрабатываются методы их концентрации, надежного связывания и размещения в устойчивых геологических формациях, где, по расчетам специалистов, они могут содержаться в течение тысячелетий. Серьезным недостатком атомной энергетики является радиоактивность используемого топлива и продуктов его деления. Это требует создания защиты от различного типа радиоактивного излучения, что значительно повышает энергии, вырабатываемой АЭС. Кроме этого, еще одним недостатком АЭС является тепловое загрязнение воды, т.е. ее нагрева.

Интересно отметить, что по данным группы английских медиков, лица, которые работали в течение 1946 — 1988 годах на предприятиях британской ядерной промышленности, живут в среднем дольше, а уровень смертности среди них от всех причин, включая рак, значительно ниже. Если учитывать реальные уровни радиации и концентрации химических веществ в атмосфере, то можно сказать, что влияние последних на флору в целом довольно значительный по сравнению с воздействием радиации.

Приведенные данные свидетельствуют, что при работе энергетических установок экологическое воздействие атомной энергетики в десятки раз ниже, чем тепловой .

Неисправимым злом для Украины остается Чернобыльская трагедия. Но она больше касается того социального строя, что ее породил, чем атомной энергетики. Ведь ни на одной АЭС в мире, кроме Чернобыльской, не было аварий, непосредственно приведших к гибели людей.

Вероятностный метод расчета безопасности АЭС в целом свидетельствует, что при выработке одной и той же единицы электроэнергии, вероятность крупной аварии на АЭС в 100 раз ниже, чем в случае угольной энергетики. Выводы из такого сравнения очевидны.

Рост масштабов использования электрической энергии, обострение проблем охраны окружающей среды значительно активизировали поиски экологически чистых способов выработки электроэнергии. Интенсивно разрабатываются способы использования нетопливной возобновляемой энергии — солнечной, ветряной, геотермальной, энергии волн, приливов и отливов, энергии биогаза и т.д.. Источники этих видов энергии — неисчерпаемы, но следует разумно оценить, смогут ли они удовлетворить все потребности человечества.

Новейшие исследования направлены преимущественно на выработку электрической энергии за счет энергии ветра. Сооружаются ВЭС преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину — электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно обеспечивают током нефтяников, они успешно работают в труднодоступных районах, на далеких островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в период безветрия. Использование энергии ветра осложняется тем, что имеет малую плотность энергии , а также меняется его сила и направление. Ветроустановки основном используют в тех местах, где хороший ветровой режим. Для создания ветроустановок большой мощности необходимо, чтобы имел большие размеры, кроме того, воздушный винт надо поднять на достаточную высоту, поскольку на большей высоте ветер более устойчивый и имеет большую скорость. Только одна электростанция, работающая на органическом топливе, может заменить (по количеству произведенной энергии) тысячи ветровых турбин.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление — ритмичное движение морских вод — вызывают силы притяжения Луны и Солнца. Энергия приливов огромная, ее суммарная мощность на Земле составляет около 1 млрд. кВт, что больше суммарной мощности всех рек мира.

Принцип действия приливных электростанций очень прост. Во время прилива вода, вращая гидротурбины, заполняет водоем, а после отлива она из водоема выходит в океан, снова вращая турбины. Главное — найти удобное место для установки плотины, в котором высота прилива была бы значительной. Строительство и эксплуатация электростанций — сложная задача. Морская вода вызывает коррозию большинства металлов, детали установок обрастают водорослями.

Тепловой поток солнечного излучения, который достигает Земли, очень велик. Он более чем в 5000 раз превышает суммарное использование всех видов топливно-энергетических ресурсов в мире.

Среди преимуществ солнечной энергии — ее вечность и исключительная экологическая чистота. Солнечная энергия поступает на всю поверхность Земли, только полярные районы планеты страдают от ее недостатка. То есть, практически на всем земном шаре только тучи и ночь мешают пользоваться ею постоянно. Такая общедоступность делает этот вид энергии невозможным для монополизации, в отличие от нефти и газа. Конечно, стоимость 1 кВт · час. солнечной энергии значительно выше, чем полученная традиционным методом. Лишь пятая часть солнечного света преобразуется в электрический ток, но эта доля продолжает расти благодаря усилиям ученых и инженеров мира.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь збирний устройство с достаточной поверхностью. Простейшее устройство такого рода — плоский коллектор; в принципе это черная плита, хорошо изолированная снизу.

Существуют электростанции несколько иного типа, их отличие заключается в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый теплоноситель, который нагревает воду до образования пара. По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках. Однако поверхность солнечных батарей для обеспечения достаточной мощности должна быть достаточно значительной (для суточной выработки 500 МВт-час. Необходима поверхность площадью 500 000 м 2), что довольно дорого. Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет гигантское увеличение потребности в материалах, а следовательно, в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Эффективность солнечных электростанций в районах, удаленных от экватора, достаточно мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, а также ее колебания, обусловленные чередованием дня и ночи.

Геотермальная энергетика использует высокие температуры глубоких недр земной коры для выработки тепловой энергии.

В некоторых местах Земли, особенно на краю тектонических плит, теплота выходит на поверхность в виде горячих источников — гейзеров и вулканов. В других областях подводные источники протекают через горячие подземные пласты, и эту теплоту можно забрать через системы теплообмена. Исландия является примером страны, где широко используется геотермальная энергия.

Сейчас разработаны технологии, позволяющие добывать горючие газы из биологического сырья в результате химической реакции распада высокомолекулярных соединений на низкомолекулярные за счет деятельности особых бактерий (которые участвуют в реакции без доступа кислорода воздуха). Схема реакции: биомасса + + бактерии -> горючие газы + другие газы + удобрения.

Биомасса — это отходы сельскохозяйственного производства (животноводства, перерабатывающей промышленности).

Основным сырьем для производства биогаза является навоз, который доставляют на биогазовые станции. Главным продуктом биогазовой станции является смесь горючих газов (90% в смеси составляет метан). Эту смесь поставляют на установки для выработки тепла, на электростанции.

Возобновляемые источники (кроме энергии воды) имеют общий недостаток: их энергия очень слабо сконцентрирована, что создает немалые трудности для практического использования. Стоимость возобновляемых источников (без учета ГЭС) гораздо выше, чем традиционных. Как солнечная, так и ветровая и другие виды энергии, могут успешно использоваться для выработки электроэнергии в диапазоне мощностей от нескольких киловатт до десятков киловатт. Но эти виды энергии вполне неперспективные для создания мощных промышленных энергоисточников

Энергетическая проблема - одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

Слово «энергия» с греческого означает действие, деятельность. Важность понятия энергии определяется тем, что она подчиняется закону сохранения. Представление об энергии помогает понять невозможность создания вечного двигателя. Работа может совершаться только в результате определенных изменений окружающих тел или систем (горения топлива, падения воды). Способность тела при переходе его из одного состояния в другое совершать определенную работу (работоспособность) и была названа энергией. Сейчас как никогда остро встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие. Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразования из других форм. Вечные двигатели к сожалению невозможны. А сегодня 4 из 5 произведенных киловатт электроэнергии получаются при сжигании топлива или использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых станциях. Возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды потребовали нового подхода к энергетике.

Не зря говорят: «Энергетика - хлеб промышленности». Чем более развиты промышленность и техника, тем больше энергии нужно для них. Существует даже специальное понятие - «опережающее развитие энергетики». Это значит, что ни одно промышленное предприятие, ни один новый город или просто дом нельзя построить до того, как будет определен или создан заново источник энергии,

которую они станут потреблять. Вот почему по количеству добываемой и используемой энергии довольно точно можно судить о технической и экономической мощи, а проще говоря - о богатстве любого государства.

В природе запасы энергии огромны. Ее несут солнечные лучи, ветры и движущиеся массы воды, она хранится в древесине, залежах газа, нефти, каменного угля. Практически безгранична энергия, «запечатанная» в ядрах атомов вещества. Но не все ее формы пригодны для прямого использования.

За долгую историю энергетики накопилось много технических средств и способов добывания энергии и преобразования ее в нужные людям формы. Собственно, и человек-то стал человеком только тогда, когда научился получать и использовать тепловую энергию. Огонь костров зажгли первые люди, еще не понимавшие его природы, однако этот способ преобразования химической

энергии в тепловую сохраняется и совершенствуется уже на протяжении тысячелетий.

К энергии собственных мускулов и огня люди добавили мускульную энергию животных. Они изобрели технику для удаления химически связанной воды из глины с помощью тепловой энергии огня - гончарные печи, в которых получали прочные керамические изделия. Конечно, процессы, происходящие при этом, человек познал только тысячелетия спустя.

Потом люди придумали мельницы - технику для преобразования энергии ветряных потоков и ветра в механическую энергии вращающегося вала. Но только с изобретением паровой машины, двигателя внутреннего сгорания, гидравлической, паровой и газовой турбин, электрических генератора и двигателя, человечество получило в свое распоряжение достаточно мощные

технические устройства. Они способны преобразовать природную энергию в иные ее виды, удобные для применения и получения больших количеств работы. Поиск новых источников энергии на этом не завершился: были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и - уже в середине ХХ столетия - атомные реакторы.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем шестимиллиардного населения Земли становится сейчас все более насущной.

Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. В процессе производства электроэнергии на ТЭС происходит выброс вредных веществ в атмосферу. Причем если топливом служит уголь, особенно бурый, малоценный для другого вида использования и с большим содержанием ненужных примесей, выбросы достигают колоссальных размеров. И, наконец, аварии на ТЭС наносят большой ущерб природе, сопоставимый с вредом любого крупного пожара. В худшем случае такой пожар может сопровождаться взрывом с образованием облака угольной пыли или сажи.

Гидроэнергетические ресурсы в развитых странах используются практически полностью: большинство речных участков, пригодных для гидротехнического строительства, уже освоены. А какой вред причиняют природе гидроэлектростанции! Выбросов в воздух от ГЭС нет никаких, но зато

вред водной среде наносит довольно большой. В первую очередь страдают рыбы, которые не могут преодолеть плотины ГЭС. На реках, где построены гидроэлектростанции, особенно если их несколько – так называемые каскады ГЭС, - резко меняется количество воды до и после плотин. На равнинных реках разливаются огромные водохранилища, и затопленные земли безвозвратно потеряны для сельского хозяйства, лесов, лугов и расселения людей. Что касается аварий на ГЭС, то в случае прорыва любой гидроэлектростанции образуется огромная волна, которая сметет все находящиеся ниже плотины ГЭС. А ведь большинство таких плотин расположено вблизи крупных городов с населением в несколько сотен тысяч жителей.

Выход из создавшегося положения виделся в развитии атомной энергетики. На конец 1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС. Серьезным тормозом для дальнейшего развития атомной энергетики являются проблемы загрязнения окружающей среды. Все это дополнительно осложняет отношение к атомной энергетике. Все чаще звучат призывы, требующие отказаться от использования ядерного топлива вообще, закрыть все атомные электростанции и возвратится к производству электроэнергии на ТЭС и ГЭС, а также использовать так называемые возобновимые – малые, или «нетрадиционные», - виды получения энергии. К последним относят прежде всего установки и устройства, использующие энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле.

Время не стоит на месте. В глубокой древности люди использовали как источник энергии только собственные силы, или, по возможности, силы домашних животных. Потом первым внешним источником энергии, который научились использовать люди, был огонь. Все, что вначале умели получить от огня, это приготовление еды и обогрев своего жилища. Сегодня на службе у человечества находятся источники энергии, которые превышают человеческую силу в миллионы раз. Сейчас мы готовим еду не только с помощью огня, специальной техникой поднимаем тонны грузов, используя ракеты, покоряем космос, заглядываем в глубины Земли и строим миллионы городов. Тем не менее, в мире все чаще возникают локальные энергетические кризисы, связанные с недостатком энергетических ресурсов.

Закон энергии

Энергия никогда не исчезает, она может менять форму и накапливаться. Например, растения нуждаются в солнечном свете, они превращают солнечную энергию и накапливают ее. Вместе с тем, они отдают ее нам в виде съедобных продуктов, люди и животные потребляют эти растения и превращают эту энергию, которая в них накапливается, например, в мышечную работу. С другой стороны, при сжигании дров на костре также освобождается энергия, происходящая от Солнца. Кроме того, все ископаемые ресурсы планеты, прежде всего уголь, природный газ, нефть являются накопителями солнечной энергии. Все эти топливно-энергетические ресурсы образовались из останков животных и растений, которые существовали миллионы лет назад, под действием давления и чрезвычайно высокой температуры в земной коре.

Средневековому человеку показалось бы волшебством, если бы перед его глазами кто-нибудь добыл свет из угля или привел бы в движение машину с помощью нефти. Но это волшебство заключается только в том, чтобы сделать возможным накопление энергии и переход ее из одной формы в другую. В наше время этот процесс стал для всех настолько обычным, что мало кто задумывается об энергетической проблеме и о тех ресурсах, которые мы для этого берем. С того времени, когда человечество начало разгадывать секреты энергии, оно старается добыть энергию с наименьшими затратами. Идеальным вариантом было бы изобрести машину времени, так называемую «перпертум мобиле», которая производила бы энергию сама, получая ее из ничего. Но, к сожалению, такой вечный двигатель, который бы решил все проблемы энергетических ресурсов, создать невозможно. Общее количество энергии всегда остается неизменным, ее нельзя создать, можно лишь освободить накопившуюся энергию и превратить в другую: световую, электрическую, тепловую, физическую, химическую и т. д.

Вода как источник энергии

Человек может использовать мощную силу воды, на некоторых этапах вмешиваться в природный кругооборот воды, чтобы таким образом добывать энергию. Сегодня на гидроэлектростанциях производится электроэнергия, которую можно накапливать или же сразу потреблять по назначению.

Невероятной силы морские волны ежесекундно разбиваются о многочисленные побережья, мощная энергия их выполняет свою работу. Но человечество до сих пор не в силах использовать силу морских волн для производства энергии, хотя существует бессчетное количество теоретических моделей и идей их реализации для решения энергетической проблемы. С недавнего времени, а именно после аварии на Чернобыльской АЭС правительства многих морских государств всерьез заинтересовались этим безопасным источником энергии, до этого проводились испытания в основном в области атомной энергетики.

Уголь

Все виды угля - это результат процесса, длившегося миллионы лет, во время которого останки разнообразной растительности разложились и превратились под действием высокого давления в торф, затем - в уголь. Эти залежи на протяжении миллионов лет все глубже и глубже проникали в земную кору, покрываясь сверху новыми пластами. Например, слой торфа в 50 метров уплотнялся до пласта угля в 3 метра. Первыми, еще в I столетии нашей эры, с помощью угля отапливали свои жилища римляне. Исследователи считают, что торф использовался для отопления еще в доисторический период. И только в XVI веке уголь стали использовать в Европе как топливо.

Уголь и нефть по своему происхождению и химическому составу принадлежат к одной группе. На самом деле из угля так же, как из нефти, можно получить бензин. Этот способ был разработан в Германии во время Второй мировой войны, когда нефти для производства бензина не хватало. Этот метод заключается в том, что в процессе сжигания уголь размельчается и проходит определенные химические процессы, в результате чего получается отличное топливо.

Нефть

Как и другие виды ископаемого топлива, которое человечество сжигает для получения тепла и электроэнергии, нефть имеет чрезвычайно почтенный возраст. Самые старые месторождения нефти были образованы 600 млн лет назад. Нефть заполняла все пустоты и щели земной коры, создавая громадные месторождения. В наше время они активно отыскиваются, бурятся скважины и добываются огромные запасы этих залежей.

Из нефти производят все больше и больше веществ, потребляемых человечеством. Бензин и дизельное топливо - не единственные продукты, потребляемые человеком. Нефть является сырьем для производства лекарств, искусственных тканей, ядов, минеральных удобрений, косметики, пластмассы. Мы даже не подозреваем, насколько человечество зависимо от этих топливно-энергетических ресурсов. Не зря самые богатые страны в мире - это страны-добытчики и производители нефти. В наше время везде господствует нефть. Ни одна другая форма по мощности пока не может заменить нефть как источник энергии.

Природный газ

Газ, используемый для отопления, приготовления еды или производства электроэнергии, - это в большинстве случаев пропан, бутан или природный газ. Он был обнаружен во время бурения первых нефтяных скважин почти случайно. Сегодня природный газ обеспечивает пятую часть мировой потребности в энергии.

Природный газ, который сгорает во время приготовления еды, выделяет энергии в два раза больше, чем электрический ток, производимый тепловыми электростанциями. Природный газ, так же как и уголь, является ископаемым топливом, но по своему происхождению ближе к нефти. Именно поэтому он добывается вместе с нефтью или в виде самостоятельных газовых образований. Проще всего добывать природный газ из месторождений, которые находятся под землей, как на Ближнем Востоке или в Сибири. Безопасность при его выработке обеспечивается системой соединительных труб и вентилей, с помощью которых регулируют давление, так как газовые месторождения постоянно находятся под огромным давлением.

Главные европейские месторождения газа находятся в Италии, Франции и Голландии, а также в Северном море, возле побережья Великобритании и Норвегии. Кроме этого, Россия поставляет сибирский газ разветвленной системой газопроводов в страны Центральной Европы. Россия - главный поставщик газа, из Сибири поступает третья часть всех используемых в мире запасов газа.

Энергия из атомов

Атомную энергию человечество научилось получать на электростанциях путем расщепления ядра атома урана. Именно этот элемент имеет нестабильное ядро и легче всего расщепляется под действием нейтронов. В результате распада ядра освобождаются новые нейтроны, которые, в свою очередь, расщепляют другие ядра атомов. Этот процесс превращается в цепную реакцию и освобождает огромное количество энергии, которая используется для превращения воды в пар, приводящий в движение турбину и электрогенератор. К сожалению, этот способ решения энергетической проблемы небезопасный, вместе с энергией атомных ядер происходит радиоактивное излучение, опасное для всех живых организмов. Поэтому защита с помощью специальных кожухов на таких электростанциях должна быть максимальной.

Мягкие энергии

По мнению ученых, решение энергетической проблемы в будущем за мягкими альтернативными видами энергии. Существуют такие формы, как энергия ветра, биоэнергия и солнечная энергия. Они не тратят полезные ископаемые и не вредят окружающей среде. Еще их называют возобновляемыми источниками энергии. До тех пор, пока существует жизнь на Земле, сила ветра, биоэнергия и солнечная энергия неисчерпаемы, а ископаемые источники в виде угля, газа и нефти когда-нибудь исчезнут.

Биоэнергия

Биоэнергия - энергия, которая вырабатывается из растений. Для животных и людей растения являются самым важным источником энергии и пищевым продуктом. Растения получают запас энергии непосредственно от Солнца, древесина - носитель возобновляемой биоэнергии. Но потребности нашего индустриального общества настолько велики, что вся древесина на планете сможет удовлетворить только небольшую ее часть, не решая проблемы энергетической. Во многих странах древесина выступает основным источником энергии. Неконтролируемая вырубка ведет к уменьшению количества деревьев, поскольку часто для их насаждений не хватает денег. В таком случае этот источник постепенно становится невозобновляемым, что станет одной из причин энергетической проблемы.

Альтернативным и перспективным методом получения энергии считается производство биогаза. Он формируется из разрушенных веществ животного и растительного мира при отсутствии контакта с воздухом. Сельские хозяйства, где собирается в виде отходов много биомассы, могут использовать для производства метана специальные установки биогаза. Работа таких установок не вредит окружающей среде, а их использование не требует никаких затрат. Решение энергетической и сырьевой проблемы именно в таких альтернативных источниках. Но, конечно, сначала они должны быть построены, а первые опыты всегда связаны с большими расходами. Интересный способ расходовать меньше бензин, например, нашли в Бразилии. Они производят биоспирт - жидкость, получаемую из брожения сахарного тростника и кукурузы. Этот алкоголь добавляется к обычному бензину. Таким образом, страна становится менее зависимой от импорта бензина.

Еще один пример использования биоэнергии представляют собой калифорнийские побережья. На морских фермах выращивается одна из разновидностей морских водорослей, которые ежедневно вырастают на полметра. Их также перерабатывают для получения бензина, а другие виды водорослей используют как сырье на тепловых электростанциях, уменьшая энергетическую и сырьевую проблему.

Энергия ветра

Ветер - один из традиционных источников энергии. Еще в VII веке до н. э. в Персии использовали ветряки, а в 1920 году в США впервые ветряк использовали для производства электроэнергии. Еще спустя 10 лет в Австрии и Баварии были построены ветряные установки, которые обеспечивали собственным электричеством целые местности.

Современные силовые установки производят электроэнергию. С помощью силы ветра движутся электрогенераторы, которые питают электросеть или же накапливают энергию в аккумуляторных батареях. По мнению специалистов, использование силы ветра имеет большое будущее, если человечество отдаст предпочтение развитию технологии альтернативной энергетики, а не атомной энергетике и использованию нефти как источника энергии.

Солнечная энергия

С точки зрения производства энергии, мы можем рассматривать Солнце как разновидность атомного реактора чрезвычайной мощности. Только миниатюрная частичка достигает Земли, но даже она дает возможность жизни. Можно ли превращать солнечную энергию непосредственно в электрическую? Да, это вполне возможно с помощью солнечных батарей. Уже сегодня везде, где ярко светит Солнце и потребности в электроэнергии небольшие, получают энергию непосредственно от Солнца. Солнечные батареи - это пластины, которые имеют два чрезвычайно тонких слоя. Один слой состоит из кремния, второй - из кремния и бора. Вместе с солнечным светом, который попадает на солнечную батарею, на ее внешний слой проникают фотоны - мельчайшие частички света, излучаемые Солнцем. Они приводят в движение электроны, перенося их во второй слой и, таким образом, вызывают электрическое напряжение. Перемещаемые электроны попадают в накопитель тока, затем - в электрические проводники. Таким образом, например, станции на солнечных батареях уже решают энергетическую проблему Дальнего Востока.

Солнечные батареи постоянно совершенствуются. Пока они еще очень дорогие, но надеемся, что в недалеком будущем они станут достаточно эффективными и дешевыми и смогут решить глобальную энергетическую проблему, удовлетворить значительную часть потребностей человечества в электроэнергии. Такие солнечные фермы сейчас находятся в нежилых краях из-за чрезвычайной жары. Перспективы использования солнечной энергии огромные, по мнению специалистов, если техника для производства водорода будет дальше развиваться, то накопленную в пустынных районах солнечную энергию можно будет доставлять в виде водорода к странам-потребителям.

Зачем беречь энергетические запасы?

Залежи нефти, угля и природного газа, образованные нашей планетой на протяжении миллионов лет, человечество тратит за несколько лет. Когда мы бездумно тратим эти запасы с увеличением добычи энергоносителей, мы обворовываем своих потомков.

Этим мы нарушаем баланс энергии на Земле, ведь соотношение полученной энергии и отдаваемой обратно в космос должно быть уравновешенным. Если же человечество уничтожает и сжигает энергетические запасы, то образуются газы, которые препятствуют возвращению в космос излишка солнечной энергии. Как результат, возникает глобальная энергетическая проблема - наша планета становится теплее, возникает явление, называемое парниковым эффектом. Парниковый эффект может настолько изменить мировой климат, что произойдет расширение пустынь, образуются опустошающие смерчи, растает лед на полюсах, значительно поднимется уровень моря, множество побережий будут залиты водой.

Кроме того, время истощения энергетических ресурсов уже пришло. Ученые бьют тревогу, доказывая, что энергетических ископаемых запасов хватит на несколько десятков лет, затем потребление энергии снизится и благосостояние человечества тоже. Решение проблемы в быстром переходе общества к разумному потреблению энергетических запасов и разработке новых альтернативных и безопасных методов добычи энергии.

Электроэнергетический комплекс без преувеличения может быть назван одной из ключевых отраслей промышленности. Без электроэнергии невозможно производство в практически любой другой области. Таким образом, от энергетики, в конечном счете, зависит вся экономика нашей страны. Попробуем разобраться, в каком состоянии в настоящий момент находится российская энергетика и чего ожидать от нее в будущем.

Россия – один из лидеров мирового энергетического рынка

В настоящее время Россия входит в десятку крупнейших производителей электроэнергии и в число стран, обладающих самыми крупными запасами энергоресурсов. Во многом сегодняшнее лидерство определили заслуги советских строителей – речь идет о масштабном строительстве тепло- и гидроэлектростанций (проект ГОЭЛРО), а позднее и АЭС. В 60-80-х годах прогресс обеспечивался за счет активного освоения природных ресурсов Западной и Восточной Сибири.

А вот в последнее десятилетие XX-века энергетика была практически заброшена. Новые проекты, введенные в работу в тот период, можно пересчитать буквально по пальцам. В начале 2000-х ситуация начала понемногу исправляться, но и проблем пока еще очень много, и темпы роста не так велики, как хотелось бы.

Бич энергетики – устаревшее оборудование и технологии, отсутствие кадров и инвестиций

По оценкам экспертов, от 50 до 80% оборудования, занятого сегодня в российском производстве энергии, уже выработало или в ближайшие годы выработает свой ресурс. А это означает, что в обозримом будущем мы вполне сможем столкнуться с нехваткой электроэнергии и, как не трудно догадаться, с повышением цен. Несмотря на то, что с 2003 года наблюдается рост объема производства электроэнергии, электроэнергия становится все более дефицитной. У нас не хватает генерирующих мощностей, да и то, что есть, используется недостаточно эффективно: весь объем вырабатываемой энергии часто бывает сложно передать потребителю вследствие недостаточного развития электросетей.

Основной проблемой, доставшейся нам в наследство еще от СССР, является то, что половина электроэнергии в стране вырабатывается на газовых паротурбинных блоках, отличающихся малым КПД. КПД газовых паротурбинных блоков в полтора раза ниже, чем у парогазовых.

Страны Европейского Союза и США постепенно заменяют устаревшую паротурбинную технологию. Сегодня там на таких блоках генерируется менее 30% электроэнергии.

Эксперты Европейского банка реконструкции и развития в 2009 году провели исследование энергетического комплекса России и пришли к выводам о необходимости кардинальной реформы, включающей в себя полную замену оборудования на большинстве гидро- и теплоэнергостанций страны. По их подсчетам, общие затраты на модернизацию отрасли составят не менее 48 миллиардов евро.

Вместе с тем, в прошлом году нам удалось ввести в строй производственные мощности, генерирующие 6 ГВт электроэнергии, что стало рекордным показателем с 1985 года.

С другой стороны, российская промышленность продолжает оставаться чрезвычайно энергоемкой. Затраты энергии на производство ВВП превышают среднемировой показатель в 2,3 раза, а в отношении показателя государств Европы – в три раза.

Проблемой является и снижение научно-производственного потенциала в отрасли. Сегодня мы в состоянии производить генераторы и трансформаторы, не уступающие по эксплуатационным параметрам мировым аналогам. Но с точки зрения надежности и безопасности уже наблюдается некоторое отставание. Кроме того, модернизация имеющихся производств и внедрение новых технологий тормозится, в том числе, и отсутствием необходимого количества специалистов нужной квалификации.

Чего ожидать в будущем?

По прогнозам специалистов, в период с 2007 по 2015 год рост внутреннего спроса на электроэнергию составит, в среднем, 3,7-4,0% в год, а в период с 2016 по 2020 годы – 3,6-3,7%. Снижение роста объясняют модернизацией производства и внедрением менее энергоемких технологий. В связи с этим, энергетики каждый год должны вводить в строй мощности, генерирующие 130-200 млн. кВт.

Правительством РФ было принято решение о реализации нескольких программ, в рамках которых планируется снижение энергоемкости самых различных областей хозяйства:

- «Энергоэффективный квартал». В рамках программы планируется коренная модернизация систем энергоснабжения ряда мелких городов и отдельных микрорайонов. Впоследствии опыт будет распространен на системы всей страны;

- «Малая комплексная энергетика», в рамках которой планируется замена оборудования локальных генерирующих мощностей;

- «Инновационная энергетика», проект по внедрению новых технологий и решений.

Кроме того, значительное внимание уделяется атомной энергетике. Благодаря накопленному опыту у России есть все возможности сохранить конкурентоспособность на мировом рынке. Однако необходимо понимать, что 15 лет деградации не могли не сказаться на отрасли, так что сегодня ей необходимы значительные инвестиции.

Согласно государственным планам, в 2015 году рост генерирующих мощностей АЭС должен достигнуть 34-36 ГВт, а к 2020 году – 51-53 ГВт. Начиная со следующего десятилетия, запланирован постепенный переход к новой платформе, основанной на эксплуатации реакции быстрых нейтронов и замкнутом топливном цикле.

Как бы то ни было, для решения проблем в энергетическом комплексе необходим значительный рост инвестиций, повышение энергоэффективности промышленности, а также расширение производства электроэнергии за счет альтернативных источников.

К сожалению, не так давно мы допустили одну довольно серьезную ошибку: разделение и приватизацию РАО «ЕЭС России». Планировалось, что если допустить к отрасли частный капитал, это простимулирует его вкладывать средства в развитие и модернизацию. Но этого не произошло. Владельцы генерирующих мощностей и сбытовых компаний продолжают эксплуатировать устаревшее оборудование, не желая вкладываться в модернизацию. Здесь, как и во многих других отраслях, действует одно и то же правило: ориентация на «быструю» прибыль и нежелание думать о будущем. Вложения в энергетический комплекс со стороны государства по-прежнему составляют 85-90% от общего числа. Выходит, что средства вкладывает государство, а прибыль получает частник.

В связи со всем этим нетрудно сделать вывод, что сегодня власть должна озаботиться внесением изменений в законодательство, которые были бы направлены на:

Повышение контроля за деятельностью компаний отрасли;

Установление определенных показателей прибыли, которые владелец компании обязан направлять на обновление основных фондов и внедрение новых технологий, или, как вариант, экономическое стимулирование модернизации за счет налоговых льгот и других послаблений;

Возвращение чиновников-специалистов к управлению госкомпаниями энергетического сектора. Это позволит повысить управляемость и лучше контролировать ситуацию. Мера, конечно, во многом спорная, но если частные управляющие не будут работать подобающим образом, ничего другого просто не останется.

Одной из глобальных проблем современности является истощение запасов топлива, применяемого в энергетике (нефти, газа, угля, горючих сланцев и т.д.). Кроме того, эти виды топлива (применяясь к современным требования) неэкологичны, так как при их сжигании выбрасывается в атмосферу большое количество вредных веществ и образуется большое количество твердых отходов (зол и золошлаков).

Однако около 50% электроэнергии дают именно тепловые электростанции, сжигающие твердые виды топлива (уголь, торф, горючие сланцы), нефть и газовый конденсат, газ. При сжигании твердого топлива, в первую очередь каменного и бурого угля (до 30% общего мирового объема сжигаемого топлива) в атмосферу выбрасываются сера и двуокись серы, оксиды азота, углекислый газ, сажа, тяжелые металлы. Именно выбросы электростанций работающих на каменном угле (и иных видах твердого топлива) послужили фактором появления кислотных дождей.

Различные фильтры, дымо- и сажеуловители, катализаторы – безусловно, используются, но пока не настолько эффективны и дороги. Кроме того, при сжигании твердого топлива образуется огромное количество золы, шлаков и золошлаков. На территории России ежегодно накапливается до 3,5 млрд. тонн техногенных отходов от электростанций! Отметим, что при добыче 1 тонны угля шахтным методом образуется 0.5 тонн пустой пород, при добыче открытым (карьерным) способом 6 тонн, а при сжигании 1 тонны угля образуется 130 кг золы и золошлаков.

Золы и золошлаки электростанций (но всего 2% количества отходов!) в настоящее время успешно используются в строительстве, производстве стройматериалов, дорожном строительстве.

Отвалы пустой породы (http://politiko.ua/blogpost79251)

Ежегодно потребляется для вторичного использования более 61 млн. тонн золошлаковых отвалов ТЭЦ (для производства вяжущих веществ, производства керамики, огнеупоров, тепло- и звукоизоляционных материалов, углесодержащие отходы богатые органическими соединениями могут использоваться в качестве минеральных удобрений). Это весьма успешный и развивающийся бизнес, исключающий расходы на добычу и (частично) на транспортировку – только переработку и использование.

Однако фактическое использование отходов энергетики в России составляет не более 4-5%. Основные проблемы связаны как с неповоротливостью бюрократического аппарата, огромным количеством согласований, так и нежеланием бизнесменов вкладывать (пока!) средства в перерабатывающие отходы предприятия, не приносящие быстрого дохода. Без помощи государства (хотя бы законодательной) и налоговых льгот здесь не обойтись.

Эксперты отмечают, что запасы невозобновляемых видов топлива (уголь, горючие сланцы, нефть, газ, для АЭС) небезграничны, и через определенное количество лет человечество столкнется с проблемой энергетического голода (по оценкам экспертов, запасов нефти в России хватит на 21 год, газа на 50-60 лет). В настоящее необходимо и актуально вложение средств именно в альтернативные виды энергии и топлива, развитие и расширение данных технологий.

Альтернатива вредным выбросам электростанций – атомная энергетика. Однако это отрасль энергетики экологически небезопасна и грозит чудовищными экологическими проблемами в случае весьма возможных и непредсказуемых катастроф (вспомним хотя бы Чернобыль 1986 года). Кроме того, остро встает проблема утилизации и переработки радиоактивных отходов (что в частности проводится в России). На российских предприятиях перерабатываются радиоактивные отходы со всей Европы, причем только 10% обогащаются до состояния природного урана, остальные 90% (!!!) могут лишь утилизироваться (МК, 10 марта 2006 г.). Гарантии загрязнения радиоактивными отходами окружающей среды не существует !

Ядерное топливо (уран) относится к невозобновимым запасам природного энергетического сырья, а Россия в настоящее время испытывает «урановый голод». Еще несколько лет назад Глава Федерального агентства по недропользованию А. Ледовских отметил (Российская газета, 28 февраля 2006 г.), что после распада СССР, в России осталось не более 20% всех разведанных запасов урана, и при годовой потребности в уране 15-16 тыс. тонн добывается чуть более 3 тыс. тонн. Существующих складских запасов урана хватит лишь до 2015-2020 года.

Тем не менее, хорошо известны возобновляемые виды энергии: вода (гидростанции), солнечная энергия (гелиоэнергетика), ветер (ветроэнергетика), тепло Земли (гидротермальная), сила морских приливов и отливов.

Текучая сила воды, т.е. гидроэлектростанции, давно (с 1891 года) и широко применяются во всем мире. Они считаются (правда, весьма условно) экологически чистыми, так как практически отсутствуют выбросы в атмосферу. Но каскады электростанций, превратившие ряд рек (например, Волгу) в цепочки водохранилищ, не панацея от всех энергетических и экологических бед. При строительстве и эксплуатации водохранилищ появляется серьезные проблемы – отчуждение и затопление сельскохозяйственных угодий, лесов, населенных пунктов, что вызывает необходимость переселение жителей.

Например, при строительстве Новосибирского водохранилища ушли под воду 54 населенных пункта и были затоплены 281 км 2 только сельскохозяйственных угодий. При строительстве Ангарского каскада водохранилищ (Иркутского, Братского, Усть-Илимского) затоплено 760 тыс. га земель (230 тыс. га пахотных и пастбищных, 500 тыс. га лесных угодий), города Балаганск и старый Братск, более 300 деревень.

Кроме того, водохранилища способствуют усилению и даже появлению сейсмической активности. Так, например, в 1967 г. в Индии на плато Декан, произошло землетрясение силой 8 баллов, спровоцированное водохранилищем Койда, хотя по предварительно проведенным изысканиям и исследованиям данный район считался сейсмически неопасным.

Аварии на ГГЭС могут привести к серьезным техногенным катастрофам, как это было, например, на Саяно-Шушенской ГЭС 17 августа 2009 года . В результате аварии погибло 75 человек, а оборудованию и помещениям станции нанесён серьёзный ущерб. Работа станции по производству электроэнергии была приостановлена. Последствия аварии отразились на экологической обстановке прилегающей территории, а также на социальной и экономической сферах региона.

Существует и другие проблемы, связанные как со строительством плотин (использование миллионов кубических метров различного строительного материала), так и связанные с функционированием водохранилищ (заиливание дна, всплывание торфяников, абразия берегов, активизация негативных геологических процессов, угроза прорыва плотин и др.). Таким образом, крупные ГЭС хотя и решают энергетические проблемы, но создают проблемы как экологические, так и социальные.

Альтернатива крупным ГЭС – это миниГЭС, т.е. небольшие гидроэлектростанции, не требующие большого объема воды (в виде водохранилищ), и обеспечивающие энергией например, какой-либо город или предприятие. Каскады миниГЭС вполне смогут конкурировать с крупными энергетическими монстрами. Каковы проблемы и перспективы в этой области?

МиниГЭС очень хорошо могут себя зарекомендовать в районах с сильным течением рек и, в настоящее время, необходимы минитурбины именно для небольших гидроэлектростанций. Производство небольших турбин для миниГЭС, а главное привлечение инвестиций – это уже необходимость. При современных проблемах энергетики и удорожании тарифов на электроэнергию требуется автономность и независимость от энергосетей.

Энергия солнца (гелиоэнергетика) . В последнее время интерес к проблеме использования солнечной энергии (гелиоэнергетике) резко возрос.

Солнечные электростанции могут быть использованы как для решения локальных энергетических задач, так и глобальных проблем энергетики. Практическое применение в мире получили в основном гибридные солнечно-топливные электростанции (стоимость вырабатываемой электроэнергии составляет 0,08-0,12 $ за кВт/ч).

Гелиоустановки в Испании (Андалузия). Фото автора

В качестве примера успешного применения гелиотехнологий можно отметить проект «2000 солнечных крыш» в Германии, где разработана технология прозрачной теплоизоляции зданий и установки солнечных коллекторов с температурой 90‑50°С. Однако данная технология зависит от резервного источника электросети, из которого возмещается нехватка энергии (в случае же избытка энергия передается в сеть). Отметим, что при реализации этого проекта до 70% стоимости установок оплачивалось из федерального и земельного бюджетов.

В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов. В пустыне Мохаве (США) в 250 км от Лос‑Анджелеса создана крупнейшая в мире гелиостанция LUZ мощностью около 600 МВт. Стоимость проекта составила 1,5 млрд. долларов.

Массовое производство и использование гелиостанций в мировой энергосистеме связано с созданием технологий и материалов, позволяющих снизить стоимость установленной мощности до 1-2 $/Вт, а стоимость электроэнергии до 0,1 $/кВт.ч.

Принципиальным ограничением для такого снижения стоимости является высокая стоимость кремния высокого качества – 40-100 $/кг. Поэтому создание новых технологий получения кремния, обеспечивающих радикальное снижение его стоимости, является задачей номер один в перечне альтернативных технологий в энергетике. В России в настоящее время имеются технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год.

Если принять КПД ТЭС, работающей на мазуте за 33%, то 1 кг кремния по вырабатываемой электроэнергии эквивалентен примерно 75 тоннам нефти! Огромные запасы кремния в виде песков, кварцита, песчаника, имеющиеся в России вполне пригодны для экологических бизнес-технологий связанных с современной гелиоэнергетикой.

Однако есть и свои минусы… Эффективная деятельность гелиостанций возможна лишь в определенных районах с высокой солнечной инсоляцией. Кроме того, гелиоэнергетика относится к наиболее материалоёмким видам производства энергии (добыча кремниевого сырья и его переработки и обогащения, изготовление гелиостатов, коллекторов и т.д.). Отметим, что для производства 1 МВт/год электрической энергии с помощью солнечной энергетики потребуется затратить от 10000 до 40000 человеко-часов, в традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока электроэнергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. И хотя в настоящее время суммарная мировая мощность автономных фотоэлектрических установок достигла 500 МВт, без помощи государства пока не обойтись. Принятая в США масштабная программа «Миллион солнечных крыш», потребовала при ее реализации расходов из федерального бюджета в сумме более 6 млрд. долларов.

На развитие гелиоэнергетики в Республике Казахстан планируется только на первом этапе затратить 10 млн. долл.

Ветровая энергия . Ветроэнергетика – одна из самых молодых энергетических отраслей, но ежегодный прирост оборотов в ней впечатляет. Например, в 2003 году через мировую ветроэнергетику «прошло» около 3 млрд. евро, а в 2004 году – 8 млрд., в 2005 – 12 млрд. евро! Во многих странах возникла новая отрасль – ветроэнергетическое машиностроение. В ближайшей перспективе ветроэнергетика сохранит свои передовые позиции, а мировыми лидерами по применению энергии ветра являются США, Германия, Нидерланды, Дания, Индия.

Суммарная мировая установленная мощность крупных ветроэнергетических установок (ВЭУ) и ветроэнергетических станций (ВЭС), по разным оценкам, составляет от 10 до 2

0 ГВт. Удельные капиталовложения в ветроэнергетику ниже, чем при использовании большинства других альтернативных видов энергии, возрастает не только суммарная мощность ветряных установок, но и их единичная мощность, превысившая 1 МВт.

Ветряные установки в Пиренеях, граница Испании и Андорры. Фото автора

Тарифа, Андалузия. Ветряные установки на вершинах гор. Фото автора

Франция. Ветряные установки среди виноградников. Фото автора

Франция. Прованс. Ветряные установки. Фото автора

В Германии работают уже 14 тыс. ветровых установок, которые производят треть мирового объема ветроэлектроэнергии и существуют более тысячи предприятий, работающих с технологиями ветроэнергетики. Крупнейший в мире ветровой генератор мощностью 3000 кВт и высотой 150 метров установлен в 1982 г. в Северной Германии, в Фрисляндии.

В России спрос на ветроэнергетическое оборудование также существует, что связано с ростом цен на ископаемые источники энергии и электроэнергию, необходимостью соблюдения экологических норм, «деятельностью» энергетических монополий и в целом инфраструктурой страны. Созданы образцы отечественных ветроэнергетических установок (ВЭУ) мощностью 250 и 1000 кВт, находящиеся пока в опытной эксплуатации.

В России уже существуют компании по производству, установке и эксплуатации ветроэнергетических установок (компания «Ветропарк Инжиниринг», ЗАО «Ветроэнергетический комплекс» и ряд других), производящие ВЭУ мощностью от 300 кВт до 500 кВт. Отечественные ветрогенераторы («Бриз-5000», «Бриз-лидер») фирмы «Электросфера» работают при скорости ветра от 3 м/с и выдают мощность от 5 до 50 кВт. Стоимость различных типов «бытовых» электрогенераторов – от 5000 до 10000 Евро (вполне сопоставимо с ценой на автомобиль!), а срок службы – до 20 лет.

Ветровая энергетика для бизнеса России – перспективнейший вид вложений, так как перспективы в данном случае связаны как с экологией, так и с полной автономией, независимостью от энергетических монополий. Использование энергии ветра возможно для производства электроэнергии в частных домах, на предприятиях, а комплексы ВЭУ смогут обеспечивать электроэнергией отдельные районы.

Еще в 1996 году АО «Ростовэнерго» реализовало российско-германский проект «Эльдорадо-ветер» по строительству ветроэнергетической станции мощностью 300 кВт на территории подсобного хозяйства «Маркинское» Цымлянского района Ростовской области. Станция занимает площадь в 3 гектара и состоит из 10 решетчатых 27-метровых башен, расположенных в шахматном порядке с 12-метровыми лопастями, начинающими работать при скорости ветра уже в 4 м/сек. Полученная энергия передается в общую электрическую сеть через трансформаторную подстанцию и обслуживает потребности небольшого поселка. Комплекс автоматизирован и управляется электроникой, а обслуживают ветроэлектрическое хозяйство …всего 4 человека!

Тепловая энергия Земли (гидротермальные источники). Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Столица этого островного государства город Рейкьявик (170 тыс. человек), отапливается только за счет подземных источников, так как других местных источников энергии в Исландии практически нет.

Первая электростанция (ГеоТЭС), использующая тепло Земли, была построена в 1904 году в итальянском городе Лардерелло, и в наши дни мощность станции достигла 360 тысяч киловатт. В Новой Зеландии существует гидротермальная электростанция в районе Вайракеи, мощностью 160 тысяч киловатт. В 120 км от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

В 1967 г. на Камчатке была создана первая в нашей стране Паужетская ГеоТЭС мощностью 5 МВт, доведенная впоследствии до мощности 11 МВт. В 1968 г. появилась экспериментальная Кислогубская ПЭС мощностью 0,4 МВт, на строительстве которой был впервые использован прогрессивный метод наплавного строительства плотины.

Калужский турбинный завод освоил выпуск блок-модульных ГеоТЭС мощностью 4 и 20 МВт. Три таких блока по 4 МВт смонтированы на Верхне‑Мутновской ГеоТЭС на Камчатке. Следующая на очереди – Мутновская ГеоТЭС мощностью 40-50 МВт – будет создана в ближайшие годы. Заметим, что гидротермальные источники имеются в России только на Камчатке и Курилах (в меньшей степени на Кавказе), поэтому геотермальная энергетика не может играть значительную роль в масштабах страны в целом, но для указанных районов, которые периодически оказываются на грани выживания в ожидании очередного танкера с топливом, геотермальная энергетика способна радикально решить проблему энергообеспечения.

Суммарная мировая мощность ГеоТЭС составляет не менее 6 ГВт, они вполне конкурентоспособны по сравнению с традиционными топливными электростанциями. Однако ГеоТЭС географически привязаны к месторождениям парогидротерм или к термоаномалиям, что ограничивает область применения геотермальных установок.

Биоэнергетика. В биоэнергетике используется биогаз, содержащий метан, и образующийся при разложении (гниении) биомассы (навоза, растений, отходов деревоперерабатывающей промышленности и сельского хозяйства). Доля древесины в биомассе, которую используют в Европе – 16 %, тем не менее, древесное биотопливо считается весьма популярным в странах ЕС, например в Швеции биотопливо дает не менее 21 % тепла для отопления домов.

Однако при сжигании биотоплива все равно образуется углекислый газ (хотя и в меньших количествах), кроме того, не исключена возможность попадания биомассы в грунтовые и поверхностные воды и почву, а метана в атмосферу (при нарушении герметизациии) и соответственно загрязнения окружающей среды. Тем не менее, весьма актуально использование биоэнергетических технологий в российских сельскохозяйственных комплексах (птицеводческих и животноводческих), что с одной стороны решает проблему отходов, а с другой – исключает зависимость от энергетических компаний, оберегает производителя от роста цен на электроэнергию, что позволяет снизить себестоимость продукции, а также избавит от колоссальных убытков при отключении электроэнергии и энергоавариях (вспомним энергокризис мая 2005 года).

Энергия приливов и волн. В мире существует только одна крупная действующая приливная электростанция (ПЭС) годовой мощностью 544 млн. КВт – в устье реки Ранс, во Франции (провинция Бретань), открытая в 1966 году. На более чем 800-метровой плотине установлено 24 турбогенератора, стоимость проекта составила 420 млн. франков (в ценах 60-х годов XX века).

Что касается перспектив приливной энергетики в России, то следует отметить, что приливные электростанции (ПЭС) должны обладать весьма большой мощностью (Мезенская ПЭС на Белом море – 19200 МВт, Тугурская ПЭС на Охотском море – 7800 МВт). Несколько сотен гидроагрегатов на каждой станции, длительные сроки строительства, огромные капиталовложения (как непосредственно в ПЭС, так и в мероприятия, необходимые для адаптации их в рамках энергосистемы) делают создание ПЭС предметом весьма отдаленного будущего.

Проблемы и перспективы альтернативной энергетики. К сожалению, как отмечает доктор технических наук, заведующий отделением нетрадиционных источников энергии и энергосбережения АО «Энергетический институт им. Г.М. Кржижановского» Борис Тарнижевский, «бесплатность» большинства альтернативных видов энергии связана со значительными расходами на приобретение соответствующего оборудования. И возникает некий парадокс – альтернативную «бесплатную» энергию способны производить и использовать главным образом…богатые страны.

Однако наиболее заинтересованы в развитии альтернативных видов энергетики именно развивающиеся государства, не имеющие современной энергетической инфраструктуры, развитой сети централизованного энергоснабжения. И именно для развивающихся стран, и (к сожалению), в том числе и для России (с ее огромной территорией и специфическими климатическими условиями), необходимо создание автономного энергообеспечения путем применения альтернативных источников энергии. Богатые же страны энергетического голода пока не испытывают и проявляют интерес к альтернативной энергетике в основном по соображениям экологии, энергосбережения и диверсификации источников энергии.

Использование альтернативных видов энергии в мире приобрело ощутимые масштабы и устойчивую тенденцию к росту, однако по данным МАГАТЭ, доля всех видов альтернативной энергетики (солнца, ветра, приливных станций и т.д.) в мире составляет менее 3-5%.

По различным прогнозным оценкам, в которых в настоящее время нет недостатка, эта доля к 2015 гг. во многих государствах достигнет (или даже превзойдет) лишь 10%.

В России практическое применение альтернативных видов энергии значительно отстает от масштабов, достигнутых в других странах, несмотря на такие благоприятные предпосылки, как практически неограниченные ресурсы альтернативных видов энергии, достаточно высокий научно-технический и промышленный потенциал в данной области.

В целом, очевидно, что в России тормозом развития альтернативной энергетики и использования альтернативных видов энергии (как, впрочем, и многих других направлений), является как хронически неудовлетворительное состояние экономики, так и сокращение объемов финансирования в сфере альтернативной энергетики. Кроме того, что на пути исследователей, работающих в области данной проблемы, стоит мощное лобби олигархических корпораций, монополистов, продающих электроэнергию, нефть, газ, уголь и т.д. и, естественно, абсолютно не заинтересованных в ослаблении собственных позиций.

Литература

Каздым А.А. Экологические перспективы развития современной энергетики в России – постановка проблемы / /Альтернативная энергетика и экология. № 3 (71), 2009. С. 117-121

Вверх